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Abstract—The anisotropic perfectly matched layer (PML) is
implemented in the finite-element method (FEM) to evaluate
the S-parameters of microwave integrated circuits (MIC’s). The
PML region, which terminates the mesh over a range of frequen-
cies, may exhibit either a uniform or nonuniform conductivity
profile �(�). The performance of the PML is strongly dependent
on the choice of �(�) as well as the mesh density inside the
absorber. This observation is demonstrated numerically using
a two-dimensional (2-D) finite-element analysis. The anisotropic
PML is subsequently used in modeling three-dimensional (3-D)
microwave integrated circuits. The accuracy and overall per-
formance of the absorber is evaluated by computing theS-
parameters of a low-pass filter.

Index Terms—Finite-element method, perfectly matched layer.

I. INTRODUCTION

SINCE the introduction of the perfectly matched layer
(PML) [1], and later the anisotropic PML [2], many efforts

have concentrated on the accurate implementation of such an
absorber in finite-element method (FEM). Although obtained
results demonstrate the potential of the anisotropic PML in
computational electromagnetics [3], additional effort should
be directed toward design and optimization of PML’s. For
example, design variables such as the conductivity profile,
PML depth, and mesh size must be carefully chosen to improve
the accuracy of the solution.

This letter presents an extensive investigation on the per-
formance of the anisotropic PML absorber in the context of
the FEM. Various parametric studies on the accuracy of the
PML are systematically carried out for different conductivity
profiles. Two distinct choices are considered in this study: a
uniform and a nonuniform conductivity profile. Either choice
of profile may result in similar results provided that the dis-
cretization error does not become a factor. Design guidelines
and suggestions concerning proper use of the anisotropic PML
are provided in the following sections. These conclusions are
based on a two-dimensional (2-D) analysis of a parallel-plate
waveguide terminated with a conductor-backed PML region.

Once evaluating the overall performance of the anisotropic
PML in 2-D guided structures, the concept is applied to
analyze the -parameters of a low-pass microwave filter. The
anisotropic PML is used to terminate ports and open sidewalls.
A uniform conductivity profile is chosen to characterize the
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PML medium. The results are compared with finite-difference
time-domain (FDTD) and FEM based on traditional dispersive
absorbing boundary conditions (ABC’s).

II. THEORY

The uniaxial structure of the permittivity and permeability
tensors characterizing the anisotropic PML is given for the
case of a -directed traveling wave by [2]

(1)

where

(2)

For a wave traveling in the -direction, the uniaxial tensors
should be rotated by 90about -axis. Similarly, for a travel-
ing wave along the -direction, the PML permittivity and
permeability tensors should be proportional to the product
of and [4]. All remaining combinations are formed
in a similar manner. Note also that the rate with which the
incident field is attenuated inside the PML region is related to

. In numerous results presented by Berenger [1], it was
clearly pointed out that the numerical reflections from the PML
interface can be significantly reduced by carefully selecting
the conductivity profile. Usually, numerical reflections occur
when the transition from one medium to another becomes more
abrupt. Thus a judicious choice for is [1]

(3)

where is the maximum conductivity value of the
anisotropic medium, is the entire depth of the PML region,
is the order of the spatial polynomial, and is the position
of the PML interface in the direction of propagation. The
spatial decay of the field inside the PML region is mainly
controlled by the actual value of . A good choice for

is given by

(4)

where is defined as the theoretical reflection coefficient at
normal incidence and is the velocity of the traveling wave
just before it reaches the PML interface. Setting the reflection
coefficient to a desired value, e.g., , a good estimate for

can be obtained. Equation (4) does not take into account
the discretization error.
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Fig. 1. Reflection coefficient versus frequency for various values ofR

(N = 10; d = 20 mm, m = 2).

The continuous distribution of inside the PML medium
is staircased based on the number of layers involved. A layer
is defined as a rectangular region of uniform conductivity
which, depending on the mesh size, might accommodate more
than one element in the-direction. Each layer exhibits a
distinct conductivity value. An alternative choice is the use
of a uniform instead of a nonuniform conductivity profile. In
such a case, the spatial variation of the material conductivity

inside the PML is set to a constant; i.e.,
. Such a choice of though results in an abrupt

material discontinuity thereby creating numerical reflections
due to insufficient discretization near the interface. A finer
discretization inside the PML approximates better the rapid
variation of the incident field; thus, smaller reflections occur.

III. RESULTS

The accuracy of the anisotropic PML absorber was first
investigated in the case of a parallel-plate waveguide excited
with the TEM mode. The parallel-plate waveguide is air-filled
and terminated with a nonuniform PML region backed with
a perfect electric conductor. The depth of the PML is 20
mm and the number of layers () is 10. The average mesh
size is 1 mm. The order of the spatial polynomial, shown in
(3), is 2 (quadratic profile). The accuracy of a nonuniform
conductivity profile is investigated for various values of
which, as indicated by (4), directly relates to . The
resulting reflection coefficient as a function of frequency is
depicted in Fig. 1. It is interesting to observe that the obtained
numerical reflection coefficient reduces substantially when the
desired value of decreases from 0.1 to 0.0001. Note also
that for larger values of , the reflection coefficient remains
constant versus frequency, which is expected according to the
theory supporting the PML concept. However, for smaller
values of , the reflection coefficient is dominated by the
discretization error, which increases with increasing frequency.

The same air-filled parallel-plate waveguide was chosen
to investigate the effect of changing the depth of the PML
region while maintaining all remaining parameters constant.
The reflection coefficient versus frequency for three different

Fig. 2. Reflection coefficient versus frequency for various values ofd

(N = 10; R = 1:0e�4; m = 2).

values of is shown in Fig. 2. This figure illustrates that
by increasing the depth of the PML region, the reflection
coefficient at the lower frequency range becomes smaller.
Specifically, increasing the PML depth by three times the
original value, the reflection coefficient at the lower end
of the frequency range is reduced by almost 20 dB. The
reason relates to the fact that by increasing becomes
smaller; therefore, the field inside the PML region decays more
gradually, which obviously means less discretization error. The
smaller the PML depth, the denser the grid should be in order
to achieve the desirable accuracy. Based on the 2-D analysis,
it was found that by choosing the mesh sizeinside the PML
region to be approximately equal to and setting ,
the numerical reflection coefficient from the PML termination
is on the order of 60 dB.

It was also found that by increasing larger than does not
have a significant effect on the accuracy of the PML, provided
that and mesh density remain unchanged [5]. However, using
a single-layer PML (uniform conductivity profile), the solution
accuracy deteriorates substantially. The reason is thatis now
set to , thus forcing the wave to attenuate quite rapidly
inside the PML. In such a case, the discretization error, which
is caused by poor approximation of the field variation near the
PML interface, is substantially larger than the discretization
error observed when using a nonuniform conductivity profile.
This type of error can be significantly reduced by using a finer
mesh inside the PML region. Such improvement is illustrated
numerically in Fig. 3 for a parallel-plate waveguide that is
terminated at the output port using a uniform profile PML
medium of depth equal to 20 mm. This figure provides a
comparison of the numerical reflection coefficient versus
( ) for three different mesh densities: mesh #1 has
an average cell size of 0.5 mm; mesh #2 has an average cell
size of 1.0 mm; and mesh #3 has an average cell size of 2.0
mm. The operating frequency is set to 100 MHz. Although
only a uniform conductivity profile, the numerical reflection
coefficient closely follows the theoretical reflection coefficient,
obtained by rearranging (4), up to a level of65 dB where the
discretization error begins to dominate. To reach even lower
than 65 dB, let us say 75 dB, which is the error level
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Fig. 3. The effect of discretization error in optimizing a single-layer PML
medium (� = ln(1=R)).

obtained previously using a nonuniform conductivity profile
with mesh size of just 1 mm, the triangular mesh inside the
PML should be additionally refined. This has been proven
to be computationally expensive for three-dimensional (3-D)
problems.

Based on the 2-D analysis, it is clear that the use of a
nonuniform conductivity profile results in a higher degree of
accuracy compared to a uniform conductivity profile, unless a
very fine mesh is used for the second case. Unfortunately,
the nonuniform conductivity profile introduces geometrical
complexities due to the unstructured nature of the mesh.
In other words, the PML region has to be partitioned into

rectangular segments before meshing. In addition, each
segment has to be assigned with a distinct material number.
To avoid such complexities, a uniform conductivity profile is
implemented for the analysis of microwave circuits. In this
case, the circuit is surrounded only by one layer of absorbing
material.

A vector finite-element code was implemented to compute
the -parameters of a microwave low-pass filter. This circuit
was originally analyzed by Sheenet al. [6] using the FDTD
method. The depth of the single-layer PML region is only
3 mm and the distance to the nearest discontinuity is also 3
mm. The geometry was discretized using linear tetrahedral el-
ements. The average size of the element used is approximately
1 mm, whereas the total number of elements is 27 854. Note
that only three elements exist (along the normal direction)
inside the PML region; this is not satisfactory. At least ten
elements are needed to guarantee accuracy close to50 dB.
A 2-D full-wave finite-element analysis is used to obtain the
fundamental mode distribution at the input port, which is then
used as the field excitation for the 3-D circuit. The magnitude
of and is illustrated in Fig. 4. These numerical results
are compared with data obtained using both the FDTD method
and the FEM based on dispersive ABC’s. The comparison
among the three data sets illustrates good agreement. At the
higher frequencies, however, the discrepancy between the two

Fig. 4. S-parameters of a low-pass filter printed on a RT/Duroid substrate
with �r = 2:2.

data sets becomes more visible, which seems to be attributed
to an increasing discretization error in both methods.

IV. CONCLUSION

A finite-element analysis was used to investigate the per-
formance of perfectly matched layers in discretized domains.
Assuming the mesh density remains the same, a nonuniform
conductivity profile, staircased with at least two layers, pro-
vides better results than a uniform conductivity profile. A
refined mesh inside the PML always improves the solution
accuracy. An optimized anisotropic PML was found not only
simple to implement in FEM but also accurate in predict-
ing scattering parameters of microwave circuits. A serious
disadvantage of this concept, however, is the resulting slow
convergence for iterative solvers. At present, the use of an
ABC in FEM is computationally more efficient than PML, but
not necessarily more accurate. Future developments on the
subject suggest that the PML will most likely be the preferred
approach to truncating the finite-element domain.
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